Remove Generative AI Remove Machine Learning Remove Systems Review
article thumbnail

Accelerate AWS Well-Architected reviews with Generative AI

AWS Machine Learning - AI

As systems scale, conducting thorough AWS Well-Architected Framework Reviews (WAFRs) becomes even more crucial, offering deeper insights and strategic value to help organizations optimize their growing cloud environments. In this post, we explore a generative AI solution leveraging Amazon Bedrock to streamline the WAFR process.

article thumbnail

Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI

AWS Machine Learning - AI

With the QnABot on AWS (QnABot), integrated with Microsoft Azure Entra ID access controls, Principal launched an intelligent self-service solution rooted in generative AI. This data includes manuals, communications, documents, and other content across various systems like SharePoint, OneNote, and the company’s intranet.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

The key to operational AI: Modern data architecture

CIO

Today, enterprises are leveraging various types of AI to achieve their goals. Just as DevOps has become an effective model for organizing application teams, a similar approach can be applied here through machine learning operations, or “MLOps,” which automates machine learning workflows and deployments.

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning - AI

While organizations continue to discover the powerful applications of generative AI , adoption is often slowed down by team silos and bespoke workflows. To move faster, enterprises need robust operating models and a holistic approach that simplifies the generative AI lifecycle.

article thumbnail

Ground truth generation and review best practices for evaluating generative AI question-answering with FMEval

AWS Machine Learning - AI

Generative AI question-answering applications are pushing the boundaries of enterprise productivity. These assistants can be powered by various backend architectures including Retrieval Augmented Generation (RAG), agentic workflows, fine-tuned large language models (LLMs), or a combination of these techniques.

article thumbnail

Create generative AI agents that interact with your companies’ systems in a few clicks using Amazon Bedrock in Amazon SageMaker Unified Studio

AWS Machine Learning - AI

Companies of all sizes face mounting pressure to operate efficiently as they manage growing volumes of data, systems, and customer interactions. Users can access these AI capabilities through their organizations single sign-on (SSO), collaborate with team members, and refine AI applications without needing AWS Management Console access.

article thumbnail

Unlocking the full potential of enterprise AI

CIO

Despite the huge promise surrounding AI, many organizations are finding their implementations are not delivering as hoped. 1] The limits of siloed AI implementations According to SS&C Blue Prism , an expert on AI and automation, the chief issue is that enterprises often implement AI in siloes.