Remove Data Remove Data Engineering Remove Training
article thumbnail

Data engineers vs. data scientists

O'Reilly Media - Data

It’s important to understand the differences between a data engineer and a data scientist. Misunderstanding or not knowing these differences are making teams fail or underperform with big data. I think some of these misconceptions come from the diagrams that are used to describe data scientists and data engineers.

article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO

In todays economy, as the saying goes, data is the new gold a valuable asset from a financial standpoint. A similar transformation has occurred with data. More than 20 years ago, data within organizations was like scattered rocks on early Earth.

Data 167
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

When is data too clean to be useful for enterprise AI?

CIO

Once the province of the data warehouse team, data management has increasingly become a C-suite priority, with data quality seen as key for both customer experience and business performance. But along with siloed data and compliance concerns , poor data quality is holding back enterprise AI projects.

Data 211
article thumbnail

Comprehensive data management for AI: The next-gen data management engine that will drive AI to new heights

CIO

The next phase of this transformation requires an intelligent data infrastructure that can bring AI closer to enterprise data. The challenges of integrating data with AI workflows When I speak with our customers, the challenges they talk about involve integrating their data and their enterprise AI workflows.

article thumbnail

Data & Analytics Maturity Model Workshop Series

Speaker: Dave Mariani, Co-founder & Chief Technology Officer, AtScale; Bob Kelly, Director of Education and Enablement, AtScale

Check out this new instructor-led training workshop series to help advance your organization's data & analytics maturity. Given how data changes fast, there’s a clear need for a measuring stick for data and analytics maturity. Workshop video modules include: Breaking down data silos.

article thumbnail

The key to operational AI: Modern data architecture

CIO

From customer service chatbots to marketing teams analyzing call center data, the majority of enterprises—about 90% according to recent data —have begun exploring AI. For companies investing in data science, realizing the return on these investments requires embedding AI deeply into business processes.

article thumbnail

From legacy to lakehouse: Centralizing insurance data with Delta Lake

CIO

In 2025, insurers face a data deluge driven by expanding third-party integrations and partnerships. Many still rely on legacy platforms , such as on-premises warehouses or siloed data systems. Step 1: Data ingestion Identify your data sources. First, list out all the insurance data sources.

Insurance 164