This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Data Scientist Cathy O’Neil has recently written an entire book filled with examples of poor interpretability as a dire warning of the potential social carnage from misunderstood models—e.g., There is also a trade off in balancing a model’s interpretability and its performance.
Sure, you might get lucky and find the right person with the right skills in the right geography, but it’s not realistic to scale up and retain a larger engineering organization that way. Only the largest engineering organizations have the scale to make this kind of continuous investment. Where Did All the People Go?
Many customers looking at modernizing their pipeline orchestration have turned to Apache Airflow, a flexible and scalable workflow manager for dataengineers. Airflow users can avoid writing custom code to connect to a new system, but simply use the off-the-shelf providers. Step 0: Skip if you already have Airflow.
4:45pm-5:45pm NFX 202 A day in the life of a Netflix Engineer Dave Hahn , SRE Engineering Manager Abstract : Netflix is a large, ever-changing ecosystem serving millions of customers across the globe through cloud-based systems and a globally distributed CDN. In 2019, Netflix moved thousands of container hosts to bare metal.
Berg , Romain Cledat , Kayla Seeley , Shashank Srikanth , Chaoying Wang , Darin Yu Netflix uses data science and machine learning across all facets of the company, powering a wide range of business applications from our internal infrastructure and content demand modeling to media understanding.
It offers high throughput, low latency, and scalability that meets the requirements of Big Data. The technology was written in Java and Scala in LinkedIn to solve the internal problem of managing continuous data flows. What does the high-performance data project have to do with the real Franz Kafka’s heritage?
In-store cameras and sensors detect each product one takes from a shelf, and items are being added to a virtual cart while a customer proceeds. Physical stores still have a lion’s share of sales, but the tendency of the growing demand for online experiences shouldn’t be ignored. Source: Forrester Consulting. Amazon Go stores.
diversity of sales channels, complex structure resulting in siloed data and lack of visibility. There are two main approaches to demand planning: Traditional statistical methods make forecasts based on historical data and assume the continuation of existing trends. Supply chain management process. Everything starts with a plan.
4:45pm-5:45pm NFX 202 A day in the life of a Netflix Engineer Dave Hahn , SRE Engineering Manager Abstract : Netflix is a large, ever-changing ecosystem serving millions of customers across the globe through cloud-based systems and a globally distributed CDN. Wednesday?—?December
4:45pm-5:45pm NFX 202 A day in the life of a Netflix Engineer Dave Hahn , SRE Engineering Manager Abstract : Netflix is a large, ever-changing ecosystem serving millions of customers across the globe through cloud-based systems and a globally distributed CDN. Wednesday?—?December
Leading executives focus on building resilient and intelligent supply chains that can withstand the turmoil due to data-based proactive decisions. “Control towers are the artificial intelligence (AI) of supply chain. Everyone wants to have it, but nobody quite knows how it works.” Christian Titze, vice president analyst at Gartner.
We organize all of the trending information in your field so you don't have to. Join 49,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content