Remove Data Engineering Remove Network Remove Storage
article thumbnail

Comprehensive data management for AI: The next-gen data management engine that will drive AI to new heights

CIO

The core of their problem is applying AI technology to the data they already have, whether in the cloud, on their premises, or more likely both. Imagine that you’re a data engineer. The data is spread out across your different storage systems, and you don’t know what is where. Through relentless innovation.

article thumbnail

Fundamentals of Data Engineering

Xebia

The following is a review of the book Fundamentals of Data Engineering by Joe Reis and Matt Housley, published by O’Reilly in June of 2022, and some takeaway lessons. This book is as good for a project manager or any other non-technical role as it is for a computer science student or a data engineer.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Integrating Key Vault Secrets with Azure Synapse Analytics

Apiumhub

Azure Key Vault Secrets offers a centralized and secure storage alternative for API keys, passwords, certificates, and other sensitive statistics. Azure Key Vault is a cloud service that provides secure storage and access to confidential information such as passwords, API keys, and connection strings. What is Azure Key Vault Secret?

Azure 91
article thumbnail

Why a data scientist is not a data engineer

O'Reilly Media - Ideas

A few months ago, I wrote about the differences between data engineers and data scientists. An interesting thing happened: the data scientists started pushing back, arguing that they are, in fact, as skilled as data engineers at data engineering. Data engineering is not in the limelight.

article thumbnail

Data Scientist vs Data Engineer: Differences and Why You Need Both

Altexsoft

If you’re an executive who has a hard time understanding the underlying processes of data science and get confused with terminology, keep reading. We will try to answer your questions and explain how two critical data jobs are different and where they overlap. Data science vs data engineering.

article thumbnail

Practical Steps for Enhancing Reliability in Cloud Networks - Part I

Kentik

When evaluating solutions, whether to internal problems or those of our customers, I like to keep the core metrics fairly simple: will this reduce costs, increase performance, or improve the network’s reliability? It’s often taken for granted by network specialists that there is a trade-off among these three facets. Durability.

Network 104
article thumbnail

Inferencing holds the clues to AI puzzles

CIO

As with many data-hungry workloads, the instinct is to offload LLM applications into a public cloud, whose strengths include speedy time-to-market and scalability. Data-obsessed individuals such as Sherlock Holmes knew full well the importance of inferencing in making predictions, or in his case, solving mysteries.