This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Data scientists may build the ML models, but its ML engineers who implement them. This person is tasked with packing the ML model into a container and deploying to production — usually as a microservice,” says Dattaraj Rao, innovation and R&D architect at technology services company Persistent Systems. Dataengineer.
Clare Sudbery – Independent Technical Coach specialized in TDD, refactoring, continuous integration, and other eXtreme Programming (XP) practices. Russ Miles – Chaos Engineer Thought Leader & Author of multiple books including “Antifragile Software: Building Adaptable Software with Microservices”.
Components that are unique to dataengineering and machine learning (red) surround the model, with more common elements (gray) in support of the entire infrastructure on the periphery. Before you can build a model, you need to ingest and verify data, after which you can extract features that power the model.
We can’t wait to attend them all: Best practices in a modern (microservices) environment by Alvaro García. Micro Frontend: the microservice puzzle extended to frontend by Audrey Neveu. Nowadays Architecture Trends, from Monolith to Microservices and Serverless by Alberto Salazar. Responsible Microservices by Nate Schutta.
This year you will have 6 unique tracks: Cloud Computing: IaaS, PaaS, SaaS DevOps: Microservices, Automation, ASRs Cybersecurity: Threats, Defenses, Tests Data Science: ML, AI, Big Data, Business Analytics Programming languages: C++, Python, Java, Javascript,Net Future & Inspire: Mobility, 5G data networks, Diversity, Blockchain, VR.
We were asked to iron out some of the creases in a new Data Producer platform involving one of the Data Consumer pipelines (let’s call it Project Datatron). At first it looked like a fairly straightforward dataengineering problem. We were introduced to the relevant Consumer, namely the Business Data team.
We organize all of the trending information in your field so you don't have to. Join 49,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content