article thumbnail

Reduce ML training costs with Amazon SageMaker HyperPod

AWS Machine Learning - AI

Training a frontier model is highly compute-intensive, requiring a distributed system of hundreds, or thousands, of accelerated instances running for several weeks or months to complete a single job. For example, pre-training the Llama 3 70B model with 15 trillion training tokens took 6.5 During the training of Llama 3.1

Training 107
article thumbnail

PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium

AWS Machine Learning - AI

Training large language models (LLMs) models has become a significant expense for businesses. PEFT is a set of techniques designed to adapt pre-trained LLMs to specific tasks while minimizing the number of parameters that need to be updated.

AWS 102
article thumbnail

Introducing AWS MCP Servers for code assistants (Part 1)

AWS Machine Learning - AI

Were excited to announce the open source release of AWS MCP Servers for code assistants a suite of specialized Model Context Protocol (MCP) servers that bring Amazon Web Services (AWS) best practices directly to your development workflow. This post is the first in a series covering AWS MCP Servers.

AWS 119
article thumbnail

Efficiently train models with large sequence lengths using Amazon SageMaker model parallel

AWS Machine Learning - AI

Across diverse industries—including healthcare, finance, and marketing—organizations are now engaged in pre-training and fine-tuning these increasingly larger LLMs, which often boast billions of parameters and larger input sequence length. This approach reduces memory pressure and enables efficient training of large models.

Training 106
article thumbnail

Multi-LLM routing strategies for generative AI applications on AWS

AWS Machine Learning - AI

The Pro tier, however, would require a highly customized LLM that has been trained on specific data and terminology, enabling it to assist with intricate tasks like drafting complex legal documents. Before migrating any of the provided solutions to production, we recommend following the AWS Well-Architected Framework.

article thumbnail

Accelerate AWS Well-Architected reviews with Generative AI

AWS Machine Learning - AI

To achieve these goals, the AWS Well-Architected Framework provides comprehensive guidance for building and improving cloud architectures. This allows teams to focus more on implementing improvements and optimizing AWS infrastructure. This systematic approach leads to more reliable and standardized evaluations.

article thumbnail

Discover, Protect and Respond with AWS and Prisma Cloud

Prisma Clud

Organizations are increasingly turning to cloud providers, like Amazon Web Services (AWS), to address these challenges and power their digital transformation initiatives. However, the vastness of AWS environments and the ease of spinning up new resources and services can lead to cloud sprawl and ongoing security risks.

AWS 105