Remove AWS Remove Scalability Remove System
article thumbnail

Implementing a Version Control System for AWS QuickSight

Xebia

Among the myriads of BI tools available, AWS QuickSight stands out as a scalable and cost-effective solution that allows users to create visualizations, perform ad-hoc analysis, and generate business insights from their data. AWS does not provide a comprehensive list of supported dataset types.

AWS 130
article thumbnail

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

AWS Machine Learning - AI

Refer to Supported Regions and models for batch inference for current supporting AWS Regions and models. To address this consideration and enhance your use of batch inference, we’ve developed a scalable solution using AWS Lambda and Amazon DynamoDB. It stores information such as job ID, status, creation time, and other metadata.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Accelerate AWS Well-Architected reviews with Generative AI

AWS Machine Learning - AI

To achieve these goals, the AWS Well-Architected Framework provides comprehensive guidance for building and improving cloud architectures. This allows teams to focus more on implementing improvements and optimizing AWS infrastructure. This scalability allows for more frequent and comprehensive reviews.

article thumbnail

Multi-LLM routing strategies for generative AI applications on AWS

AWS Machine Learning - AI

For instance, consider an AI-driven legal document analysis system designed for businesses of varying sizes, offering two primary subscription tiers: Basic and Pro. It also allows for a flexible and modular design, where new LLMs can be quickly plugged into or swapped out from a UI component without disrupting the overall system.

article thumbnail

Orchestrate generative AI workflows with Amazon Bedrock and AWS Step Functions

AWS Machine Learning - AI

This post discusses how to use AWS Step Functions to efficiently coordinate multi-step generative AI workflows, such as parallelizing API calls to Amazon Bedrock to quickly gather answers to lists of submitted questions.

article thumbnail

Discover, Protect and Respond with AWS and Prisma Cloud

Prisma Clud

Organizations are increasingly turning to cloud providers, like Amazon Web Services (AWS), to address these challenges and power their digital transformation initiatives. However, the vastness of AWS environments and the ease of spinning up new resources and services can lead to cloud sprawl and ongoing security risks.

AWS 105
article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning - AI

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. You can use AWS services such as Application Load Balancer to implement this approach. On AWS, you can use the fully managed Amazon Bedrock Agents or tools of your choice such as LangChain agents or LlamaIndex agents.