article thumbnail

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

AWS Machine Learning - AI

Refer to Supported Regions and models for batch inference for current supporting AWS Regions and models. To address this consideration and enhance your use of batch inference, we’ve developed a scalable solution using AWS Lambda and Amazon DynamoDB. It stores information such as job ID, status, creation time, and other metadata.

article thumbnail

Accelerate AWS Well-Architected reviews with Generative AI

AWS Machine Learning - AI

To achieve these goals, the AWS Well-Architected Framework provides comprehensive guidance for building and improving cloud architectures. This allows teams to focus more on implementing improvements and optimizing AWS infrastructure. This scalability allows for more frequent and comprehensive reviews.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Building a Scalable ML Pipeline and API in AWS

Dzone - DevOps

This blog post discusses an end-to-end ML pipeline on AWS SageMaker that leverages serverless computing, event-trigger-based data processing, and external API integrations. The architecture downstream ensures scalability, cost efficiency, and real-time access to applications.

article thumbnail

Build and deploy a UI for your generative AI applications with AWS and Python

AWS Machine Learning - AI

AWS provides a powerful set of tools and services that simplify the process of building and deploying generative AI applications, even for those with limited experience in frontend and backend development. The AWS deployment architecture makes sure the Python application is hosted and accessible from the internet to authenticated users.

article thumbnail

Implementing a Version Control System for AWS QuickSight

Xebia

Among the myriads of BI tools available, AWS QuickSight stands out as a scalable and cost-effective solution that allows users to create visualizations, perform ad-hoc analysis, and generate business insights from their data. AWS does not provide a comprehensive list of supported dataset types.

AWS 130
article thumbnail

Multi-LLM routing strategies for generative AI applications on AWS

AWS Machine Learning - AI

Semantic routing offers several advantages, such as efficiency gained through fast similarity search in vector databases, and scalability to accommodate a large number of task categories and downstream LLMs. Before migrating any of the provided solutions to production, we recommend following the AWS Well-Architected Framework.

article thumbnail

Orchestrate generative AI workflows with Amazon Bedrock and AWS Step Functions

AWS Machine Learning - AI

This post discusses how to use AWS Step Functions to efficiently coordinate multi-step generative AI workflows, such as parallelizing API calls to Amazon Bedrock to quickly gather answers to lists of submitted questions.