article thumbnail

Building a Scalable ML Pipeline and API in AWS

Dzone - DevOps

This blog post discusses an end-to-end ML pipeline on AWS SageMaker that leverages serverless computing, event-trigger-based data processing, and external API integrations. The architecture downstream ensures scalability, cost efficiency, and real-time access to applications.

article thumbnail

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

AWS Machine Learning - AI

Refer to Supported Regions and models for batch inference for current supporting AWS Regions and models. To address this consideration and enhance your use of batch inference, we’ve developed a scalable solution using AWS Lambda and Amazon DynamoDB. It stores information such as job ID, status, creation time, and other metadata.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Accelerate AWS Well-Architected reviews with Generative AI

AWS Machine Learning - AI

To achieve these goals, the AWS Well-Architected Framework provides comprehensive guidance for building and improving cloud architectures. This allows teams to focus more on implementing improvements and optimizing AWS infrastructure. This scalability allows for more frequent and comprehensive reviews.

article thumbnail

Implementing a Version Control System for AWS QuickSight

Xebia

Among the myriads of BI tools available, AWS QuickSight stands out as a scalable and cost-effective solution that allows users to create visualizations, perform ad-hoc analysis, and generate business insights from their data. AWS does not provide a comprehensive list of supported dataset types.

AWS 130
article thumbnail

Build and deploy a UI for your generative AI applications with AWS and Python

AWS Machine Learning - AI

AWS provides a powerful set of tools and services that simplify the process of building and deploying generative AI applications, even for those with limited experience in frontend and backend development. The AWS deployment architecture makes sure the Python application is hosted and accessible from the internet to authenticated users.

article thumbnail

Discover, Protect and Respond with AWS and Prisma Cloud

Prisma Clud

Organizations are increasingly turning to cloud providers, like Amazon Web Services (AWS), to address these challenges and power their digital transformation initiatives. However, the vastness of AWS environments and the ease of spinning up new resources and services can lead to cloud sprawl and ongoing security risks.

AWS 105
article thumbnail

Deploy Meta Llama 3.1-8B on AWS Inferentia using Amazon EKS and vLLM

AWS Machine Learning - AI

there is an increasing need for scalable, reliable, and cost-effective solutions to deploy and serve these models. AWS Trainium and AWS Inferentia based instances, combined with Amazon Elastic Kubernetes Service (Amazon EKS), provide a performant and low cost framework to run LLMs efficiently in a containerized environment.

AWS 100