Remove AWS Remove Lambda Remove Machine Learning
article thumbnail

Multi-LLM routing strategies for generative AI applications on AWS

AWS Machine Learning - AI

Implementation of dynamic routing In this section, we explore different approaches to implementing dynamic routing on AWS, covering both built-in routing features and custom solutions that you can use as a starting point to build your own. When API Gateway receives the request, it triggers a Lambda function.

article thumbnail

Introducing AWS MCP Servers for code assistants (Part 1)

AWS Machine Learning - AI

Were excited to announce the open source release of AWS MCP Servers for code assistants a suite of specialized Model Context Protocol (MCP) servers that bring Amazon Web Services (AWS) best practices directly to your development workflow. This post is the first in a series covering AWS MCP Servers.

AWS 111
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build a multi-tenant generative AI environment for your enterprise on AWS

AWS Machine Learning - AI

It also uses a number of other AWS services such as Amazon API Gateway , AWS Lambda , and Amazon SageMaker. You can use AWS services such as Application Load Balancer to implement this approach. API Gateway also provides a WebSocket API. These components are illustrated in the following diagram.

article thumbnail

Transcribe, translate, and summarize live streams in your browser with AWS AI and generative AI services

AWS Machine Learning - AI

Recognizing this need, we have developed a Chrome extension that harnesses the power of AWS AI and generative AI services, including Amazon Bedrock , an AWS managed service to build and scale generative AI applications with foundation models (FMs). The user signs in by entering a user name and a password.

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning - AI

AWS offers powerful generative AI services , including Amazon Bedrock , which allows organizations to create tailored use cases such as AI chat-based assistants that give answers based on knowledge contained in the customers’ documents, and much more. The following figure illustrates the high-level design of the solution.

article thumbnail

Harness the power of MCP servers with Amazon Bedrock Agents

AWS Machine Learning - AI

invoke(input_text=Convert 11am from NYC time to London time) We showcase an example of building an agent to understand your Amazon Web Service (AWS) spend by connecting to AWS Cost Explorer , Amazon CloudWatch , and Perplexity AI through MCP. This gives you an AI agent that can transform the way you manage your AWS spend.

article thumbnail

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

AWS Machine Learning - AI

Refer to Supported Regions and models for batch inference for current supporting AWS Regions and models. To address this consideration and enhance your use of batch inference, we’ve developed a scalable solution using AWS Lambda and Amazon DynamoDB. It stores information such as job ID, status, creation time, and other metadata.