Remove Artificial Intelligence Remove Machine Learning Remove Tools
article thumbnail

Artificial Intelligence in practice

CIO

The world has known the term artificial intelligence for decades. Developing AI When most people think about artificial intelligence, they likely imagine a coder hunched over their workstation developing AI models. Today, integrating AI into your workflow isn’t hypothetical, it’s MANDATORY.

article thumbnail

Taktile makes it easier to leverage machine learning in the financial industry

TechCrunch

Meet Taktile , a new startup that is working on a machine learning platform for financial services companies. This isn’t the first company that wants to leverage machine learning for financial products. They could use that data to train new models and roll out machine learning applications.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Snorkel AI scores $35M Series B to automate data labeling in machine learning

TechCrunch

One of the more tedious aspects of machine learning is providing a set of labels to teach the machine learning model what it needs to know. It also announced a new tool called Application Studio that provides a way to build common machine learning applications using templates and predefined components.

article thumbnail

CatalyzeX grabs $1.64M seed to help developers find right machine learning model

TechCrunch

Machine learning is exploding, and so are the number of models out there for developers to choose from. The company co-founders, brothers Gaurav Ragtah and Himanshu Ragtah, saw that there was so much research being done and wanted to build a tool to make it easier for developers to find the most applicable models for their use case.

article thumbnail

MLOps 101: The Foundation for Your AI Strategy

Many organizations are dipping their toes into machine learning and artificial intelligence (AI). Download this comprehensive guide to learn: What is MLOps? How can MLOps tools deliver trusted, scalable, and secure infrastructure for machine learning projects?

article thumbnail

Build a strong data foundation for AI-driven business growth

CIO

In the quest to reach the full potential of artificial intelligence (AI) and machine learning (ML), there’s no substitute for readily accessible, high-quality data. If the data volume is insufficient, it’s impossible to build robust ML algorithms. If the data quality is poor, the generated outcomes will be useless.

article thumbnail

Leveraging AMPs for machine learning

CIO

It’s hard for any one person or a small team to thoroughly evaluate every tool or model. Data scientists and AI engineers have so many variables to consider across the machine learning (ML) lifecycle to prevent models from degrading over time. However, the road to AI victory can be bumpy.