Remove Artificial Intelligence Remove AWS Remove Scalability
article thumbnail

Building a Scalable ML Pipeline and API in AWS

Dzone - DevOps

With rapid progress in the fields of machine learning (ML) and artificial intelligence (AI), it is important to deploy the AI/ML model efficiently in production environments. The architecture downstream ensures scalability, cost efficiency, and real-time access to applications.

article thumbnail

Automate Amazon Bedrock batch inference: Building a scalable and efficient pipeline

AWS Machine Learning - AI

Refer to Supported Regions and models for batch inference for current supporting AWS Regions and models. To address this consideration and enhance your use of batch inference, we’ve developed a scalable solution using AWS Lambda and Amazon DynamoDB. It stores information such as job ID, status, creation time, and other metadata.

article thumbnail

Accelerate AWS Well-Architected reviews with Generative AI

AWS Machine Learning - AI

To achieve these goals, the AWS Well-Architected Framework provides comprehensive guidance for building and improving cloud architectures. This allows teams to focus more on implementing improvements and optimizing AWS infrastructure. This scalability allows for more frequent and comprehensive reviews.

article thumbnail

Build and deploy a UI for your generative AI applications with AWS and Python

AWS Machine Learning - AI

AWS provides a powerful set of tools and services that simplify the process of building and deploying generative AI applications, even for those with limited experience in frontend and backend development. The AWS deployment architecture makes sure the Python application is hosted and accessible from the internet to authenticated users.

article thumbnail

Multi-LLM routing strategies for generative AI applications on AWS

AWS Machine Learning - AI

Semantic routing offers several advantages, such as efficiency gained through fast similarity search in vector databases, and scalability to accommodate a large number of task categories and downstream LLMs. Before migrating any of the provided solutions to production, we recommend following the AWS Well-Architected Framework.

article thumbnail

Principal Financial Group uses QnABot on AWS and Amazon Q Business to enhance workforce productivity with generative AI

AWS Machine Learning - AI

Principal wanted to use existing internal FAQs, documentation, and unstructured data and build an intelligent chatbot that could provide quick access to the right information for different roles. Principal also used the AWS open source repository Lex Web UI to build a frontend chat interface with Principal branding.

article thumbnail

Serving LLMs using vLLM and Amazon EC2 instances with AWS AI chips

AWS Machine Learning - AI

Using vLLM on AWS Trainium and Inferentia makes it possible to host LLMs for high performance inference and scalability. Deploy vLLM on AWS Trainium and Inferentia EC2 instances In these sections, you will be guided through using vLLM on an AWS Inferentia EC2 instance to deploy Meta’s newest Llama 3.2 You will use inf2.xlarge