article thumbnail

Artificial Intelligence in practice

CIO

The world has known the term artificial intelligence for decades. Developing AI When most people think about artificial intelligence, they likely imagine a coder hunched over their workstation developing AI models. Today, integrating AI into your workflow isn’t hypothetical, it’s MANDATORY.

article thumbnail

Amazon turns to AI to help customers find clothes that fit when shopping online

TechCrunch

The company explains it’s now using large language models, generative AI, and machine learning to power four AI-powered features that will help customers find clothing that […] © 2023 TechCrunch. All rights reserved. For personal use only.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Amazon SageMaker HyperPod makes it easier to train and fine-tune LLMs

TechCrunch

At its re:Invent conference today, Amazon’s AWS cloud arm announced the launch of SageMaker HyperPod, a new purpose-built service for training and fine-tuning large language models (LLMs). SageMaker HyperPod is now generally available. All rights reserved.

article thumbnail

Social services provider uses artificial intelligence to provide genuine help

CIO

In addition, the incapacity to properly utilize advanced analytics, artificial intelligence (AI), and machine learning (ML) shut out users hoping for statistical analysis, visualization, and general data-science features.

article thumbnail

Embedding BI: Architectural Considerations and Technical Requirements

While data platforms, artificial intelligence (AI), machine learning (ML), and programming platforms have evolved to leverage big data and streaming data, the front-end user experience has not kept up. Traditional Business Intelligence (BI) aren’t built for modern data platforms and don’t work on modern architectures.

article thumbnail

10 Key Trends of Digital Transformation in Healthcare in 2022

OTS Solutions

At the heart of this shift are AI (Artificial Intelligence), ML (Machine Learning), IoT, and other cloud-based technologies. The intelligence generated via Machine Learning. There are also significant cost savings linked with artificial intelligence in health care. On-Demand Computing.

article thumbnail

The key to operational AI: Modern data architecture

CIO

Recent research shows that 67% of enterprises are using generative AI to create new content and data based on learned patterns; 50% are using predictive AI, which employs machine learning (ML) algorithms to forecast future events; and 45% are using deep learning, a subset of ML that powers both generative and predictive models.

article thumbnail

How Banks Are Winning with AI and Automated Machine Learning

By leveraging the power of automated machine learning, banks have the potential to make data-driven decisions for products, services, and operations. Read the whitepaper, How Banks Are Winning with AI and Automated Machine Learning, to find out more about how banks are tackling their biggest data science challenges.

article thumbnail

How Banks Are Winning with AI and Automated Machine Learning

By leveraging the power of automated machine learning, banks have the potential to make data-driven decisions for products, services, and operations. Read the white paper, How Banks Are Winning with AI and Automated Machine Learning, to find out more about how banks are tackling their biggest data science challenges.

article thumbnail

Intelligent Process Automation: Boosting Bots with AI and Machine Learning

But in order to reap the rewards of Intelligent Process Automation, organizations must first educate themselves and prepare for the adoption of IPA. In Data Robot's new ebook, Intelligent Process Automation: Boosting Bots with AI and Machine Learning, we cover important issues related to IPA, including: What is RPA?

article thumbnail

Resilient Machine Learning with MLOps

Today’s economy is under pressure from inflation, rising interest rates, and disruptions in the global supply chain. As a result, many organizations are seeking new ways to overcome challenges — to be agile and rapidly respond to constant change. We do not know what the future holds.

article thumbnail

MLOps 101: The Foundation for Your AI Strategy

Many organizations are dipping their toes into machine learning and artificial intelligence (AI). Download this comprehensive guide to learn: What is MLOps? How can MLOps tools deliver trusted, scalable, and secure infrastructure for machine learning projects? Why do AI-driven organizations need it?

article thumbnail

5 Things a Data Scientist Can Do to Stay Current

With the number of available data science roles increasing by a staggering 650% since 2012, organizations are clearly looking for professionals who have the right combination of computer science, modeling, mathematics, and business skills. Fostering collaboration between DevOps and machine learning operations (MLOps) teams.

article thumbnail

How to Choose an AI Vendor

You know you want to invest in artificial intelligence (AI) and machine learning to take full advantage of the wealth of available data at your fingertips. But rapid change, vendor churn, hype and jargon make it increasingly difficult to choose an AI vendor.

article thumbnail

Trusted AI 102: A Guide to Building Fair and Unbiased AI Systems

The risk of bias in artificial intelligence (AI) has been the source of much concern and debate. How to choose the appropriate fairness and bias metrics to prioritize for your machine learning models. How to successfully navigate the bias versus accuracy trade-off for final model selection and much more.