article thumbnail

Extend large language models powered by Amazon SageMaker AI using Model Context Protocol

AWS Machine Learning - AI

For MCP implementation, you need a scalable infrastructure to host these servers and an infrastructure to host the large language model (LLM), which will perform actions with the tools implemented by the MCP server. You ask the agent to Book a 5-day trip to Europe in January and we like warm weather.

article thumbnail

Multi-LLM routing strategies for generative AI applications on AWS

AWS Machine Learning - AI

Organizations are increasingly using multiple large language models (LLMs) when building generative AI applications. Although an individual LLM can be highly capable, it might not optimally address a wide range of use cases or meet diverse performance requirements.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Techniques and approaches for monitoring large language models on AWS

AWS Machine Learning - AI

Large Language Models (LLMs) have revolutionized the field of natural language processing (NLP), improving tasks such as language translation, text summarization, and sentiment analysis. Monitoring the performance and behavior of LLMs is a critical task for ensuring their safety and effectiveness.

article thumbnail

Revolutionize trip planning with Amazon Bedrock and Amazon Location Service

AWS Machine Learning - AI

If an image is uploaded, it is stored in Amazon Simple Storage Service (Amazon S3) , and a custom AWS Lambda function will use a machine learning model deployed on Amazon SageMaker to analyze the image to extract a list of place names and the similarity score of each place name. Here is an example from LangChain.

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning - AI

The solution integrates large language models (LLMs) with your organization’s data and provides an intelligent chat assistant that understands conversation context and provides relevant, interactive responses directly within the Google Chat interface. Which LLM you want to use in Amazon Bedrock for text generation.

article thumbnail

Revolutionizing clinical trials with the power of voice and AI

AWS Machine Learning - AI

This is where the integration of cutting-edge technologies, such as audio-to-text translation and large language models (LLMs), holds the potential to revolutionize the way patients receive, process, and act on vital medical information. These insights can include: Potential adverse event detection and reporting.

article thumbnail

Use zero-shot large language models on Amazon Bedrock for custom named entity recognition

AWS Machine Learning - AI

Traditional neural network models like RNNs and LSTMs and more modern transformer-based models like BERT for NER require costly fine-tuning on labeled data for every custom entity type. By using the model’s broad linguistic understanding, you can perform NER on the fly for any specified entity type.