Remove Architecture Remove Lambda Remove Storage
article thumbnail

Intelligent healthcare forms analysis with Amazon Bedrock

AWS Machine Learning - AI

Solution overview To provide a high-level understanding of how the solution works before diving deeper into the specific elements and the services used, we discuss the architectural steps required to build our solution on AWS. Figure 1: Architecture – Standard Form – Data Extraction & Storage.

article thumbnail

Generate customized, compliant application IaC scripts for AWS Landing Zone using Amazon Bedrock

AWS Machine Learning - AI

With Amazon Bedrock, teams can input high-level architectural descriptions and use generative AI to generate a baseline configuration of Terraform scripts. AWS Landing Zone architecture in the context of cloud migration AWS Landing Zone can help you set up a secure, multi-account AWS environment based on AWS best practices.

AWS 124
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Using Agents for Amazon Bedrock to interactively generate infrastructure as code

AWS Machine Learning - AI

This solution shows how Amazon Bedrock agents can be configured to accept cloud architecture diagrams, automatically analyze them, and generate Terraform or AWS CloudFormation templates. Solution overview Before we explore the deployment process, let’s walk through the key steps of the architecture as illustrated in Figure 1.

article thumbnail

Build an internal SaaS service with cost and usage tracking for foundation models on Amazon Bedrock

AWS Machine Learning - AI

API gateways can provide loose coupling between model consumers and the model endpoint service, and flexibility to adapt to changing model, architectures, and invocation methods. In this post, we show you how to build an internal SaaS layer to access foundation models with Amazon Bedrock in a multi-tenant (team) architecture.

Lambda 137
article thumbnail

Techniques and approaches for monitoring large language models on AWS

AWS Machine Learning - AI

Our proposed architecture provides a scalable and customizable solution for online LLM monitoring, enabling teams to tailor your monitoring solution to your specific use cases and requirements. A modular architecture, where each module can intake model inference data and produce its own metrics, is necessary.

article thumbnail

Create a generative AI–powered custom Google Chat application using Amazon Bedrock

AWS Machine Learning - AI

By implementing this architectural pattern, organizations that use Google Workspace can empower their workforce to access groundbreaking AI solutions powered by Amazon Web Services (AWS) and make informed decisions without leaving their collaboration tool. This request contains the user’s message and relevant metadata.

article thumbnail

Transform one-on-one customer interactions: Build speech-capable order processing agents with AWS and generative AI

AWS Machine Learning - AI

In this post, we show you how to build a speech-capable order processing agent using Amazon Lex, Amazon Bedrock, and AWS Lambda. Solution overview The following diagram illustrates our solution architecture. This can be done with a Lambda layer or by using a specific AMI with the required libraries. awscli>=1.29.57