Remove Architecture Remove Data Engineering Remove Industry
article thumbnail

The key to operational AI: Modern data architecture

CIO

The team should be structured similarly to traditional IT or data engineering teams. However, the biggest challenge for most organizations in adopting Operational AI is outdated or inadequate data infrastructure. To succeed, Operational AI requires a modern data architecture.

article thumbnail

The future of data: A 5-pillar approach to modern data management

CIO

This approach is repeatable, minimizes dependence on manual controls, harnesses technology and AI for data management and integrates seamlessly into the digital product development process. Furthermore, generally speaking, data should not be split across multiple databases on different cloud providers to achieve cloud neutrality.

Data 167
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

What is a data engineer? An analytics role in high demand

CIO

What is a data engineer? Data engineers design, build, and optimize systems for data collection, storage, access, and analytics at scale. They create data pipelines used by data scientists, data-centric applications, and other data consumers. The data engineer role.

article thumbnail

Comprehensive data management for AI: The next-gen data management engine that will drive AI to new heights

CIO

All industries and modern applications are undergoing rapid transformation powered by advances in accelerated computing, deep learning, and artificial intelligence. The next phase of this transformation requires an intelligent data infrastructure that can bring AI closer to enterprise data. Imagine that you’re a data engineer.

article thumbnail

IT leaders: What’s the gameplan as tech badly outpaces talent?

CIO

Hes seeing the need for professionals who can not only navigate the technology itself, but also manage increasing complexities around its surrounding architectures, data sets, infrastructure, applications, and overall security. We currently have about 10 AI engineers and next year, itll be around 30.

article thumbnail

Fundamentals of Data Engineering

Xebia

The following is a review of the book Fundamentals of Data Engineering by Joe Reis and Matt Housley, published by O’Reilly in June of 2022, and some takeaway lessons. This book is as good for a project manager or any other non-technical role as it is for a computer science student or a data engineer.

article thumbnail

How AI orchestration has become more important than the models themselves

CIO

In addition, weve seen the introduction of a wide variety of small language models (SLMs), industry-specific LLMs, and, most recently, agentic AI models. Spending on vertical AI has increased 12x , this year, as more businesses recognize the improvements in data processing costs and accuracy that can be achieved with specialized LLMs.